首页> 外文OA文献 >A Theoretical Analysis of Deep Neural Networks for Texture Classification
【2h】

A Theoretical Analysis of Deep Neural Networks for Texture Classification

机译:纹理深部神经网络的理论分析   分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the use of Deep Neural Networks for the classification ofimage datasets where texture features are important for generatingclass-conditional discriminative representations. To this end, we first derivethe size of the feature space for some standard textural features extractedfrom the input dataset and then use the theory of Vapnik-Chervonenkis dimensionto show that hand-crafted feature extraction creates low-dimensionalrepresentations which help in reducing the overall excess error rate. As acorollary to this analysis, we derive for the first time upper bounds on the VCdimension of Convolutional Neural Network as well as Dropout and Dropconnectnetworks and the relation between excess error rate of Dropout and Dropconnectnetworks. The concept of intrinsic dimension is used to validate the intuitionthat texture-based datasets are inherently higher dimensional as compared tohandwritten digits or other object recognition datasets and hence moredifficult to be shattered by neural networks. We then derive the mean distancefrom the centroid to the nearest and farthest sampling points in ann-dimensional manifold and show that the Relative Contrast of the sample datavanishes as dimensionality of the underlying vector space tends to infinity.
机译:我们研究了深度神经网络用于图像数据集分类的用途,其中纹理特征对于生成类条件判别式表示很重要。为此,我们首先导出从输入数据集中提取的一些标准纹理特征的特征空间大小,然后使用Vapnik-Chervonenkis维数理论来说明手工特征提取会创建低维表示,这有助于减少总体过大误差率。作为该分析的推论,我们首次推导了卷积神经网络以及Dropout和Dropconnectnetworks的VC维度的上限,以及Dropout和Dropconnectnetworks的超额错误率之间的关系。内在维数的概念用于验证直觉,即与手写数字或其他对象识别数据集相比,基于纹理的数据集固有地具有更高的维数,因此很难被神经网络粉碎。然后,我们得出质心到Ann维流形中最接近和最远的采样点的平均距离,并表明随着基础向量空间的维数趋于无穷大,样本数据的相对对比度消失了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号